Luminescent Metal Nanoclusters for Potential Chemosensor Applications

نویسندگان

  • Muthaiah Shellaiah
  • Kien Wen Sun
چکیده

Studies of metal nanocluster (M-NCs)-based sensors for specific analyte detection have achieved significant progress in recent decades. Ultra-small-size (<2 nm) M-NCs consist of several to a few hundred metal atoms and exhibit extraordinary physical and chemical properties. Similar to organic molecules, M-NCs display absorption and emission properties via electronic transitions between energy levels upon interaction with light. As such, researchers tend to apply M-NCs in diverse fields, such as in chemosensors, biological imaging, catalysis, and environmental and electronic devices. Chemoand bio-sensory uses have been extensively explored with luminescent NCs of Au, Ag, Cu, and Pt as potential sensory materials. Luminescent bi-metallic NCs, such as Au-Ag, Au-Cu, Au-Pd, and Au-Pt have also been used as probes in chemosensory investigations. Both metallic and bi-metallic NCs have been utilized to detect various analytes, such as metal ions, anions, biomolecules, proteins, acidity or alkalinity of a solution (pH), and nucleic acids, at diverse detection ranges and limits. In this review, we have summarized the chemosensory applications of luminescent M-NCs and bi-metallic NCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Luminescent metal nanoclusters: controlled synthesis and functional applications

Luminescent metal nanoclusters that consist of only several, to tens of, metal atoms and which possess sizes comparable to the Fermi wavelength of electrons have recently attracted significant attention. This new class of luminescent materials not only provides the missing link between atomic and nanoparticle behaviors in metals but also they present abundant novel information for the developme...

متن کامل

Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity.

Native cellulose nanofibers are functionalized using luminescent metal nanoclusters to form a novel type of functional nanocellulose/nanocluster composite. Previously, various types of cellulose fibers have been functionalized with large, non-luminescent metal nanoparticles. Here, mechanically strong native cellulose nanofibers, also called nanofibrillatedcellulose (NFC), microfibrillatedcellul...

متن کامل

Development of a zinc ion-selective luminescent lanthanide chemosensor for biological applications.

Detection of chelatable zinc (Zn(2+)) in biological studies has attracted much attention recently, because chelatable Zn(2+) plays important roles in many biological systems. Lanthanide complexes (Eu(3+), Tb(3+), etc.) have excellent spectroscopic properties for biological applications, such as long luminescence lifetimes of the order of milliseconds, a large Stoke's shift of >200 nm, and high ...

متن کامل

A highly selective and sensitive luminescent chemosensor for Zn2+ ions based on cyclometalated platinum(II) complexes.

A novel luminescent Zn(2+) ions chemosensor, a cyclometalated platinum(II) bipyridyl acetylide complex, was designed. Of particular significance is that it shows a high sensitivity towards Zn(2+) ions without interference from other biologically important cations in acetonitrile. The tautomerization of amide favors detecting Zn(2+) ions among other HTM (heavy and transition metal) ions in aqueo...

متن کامل

Energy Transfer Sensitization of Luminescent Gold Nanoclusters: More than Just the Classical Förster Mechanism

Luminescent gold nanocrystals (AuNCs) are a recently-developed material with potential optic, electronic and biological applications. They also demonstrate energy transfer (ET) acceptor/sensitization properties which have been ascribed to Förster resonance energy transfer (FRET) and, to a lesser extent, nanosurface energy transfer (NSET). Here, we investigate AuNC acceptor interactions with thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017